Awani Khodkumbhe | UC Berkeley

Seeking summer 2023 internship in analog/mixed-signal, RF/mmWave ICs and wireless systems.

Education

Ph.D. University of California, Berkeley, Advisor: Prof. Ali Niknejad	Aug'21-present
Major: Electrical Engineering and Computer Sciences	CGPA: 3.91/4
Relevant Coursework: ICs for Communication, Advanced Analog ICs, Advanced Digital ICs and S	Systems
Minor: Business Administration	
Relevant Coursework: Fundamentals of Business, Entrepreneurship	
B.E. Birla Institute of Technology and Science (BITS), Pilani, Goa, India	Aug'16-Jul'20
Major: Electronics and Instrumentation Engineering	CGPA: 9.51/10, Dept. Rank 1
Industry Experience	
Texas Instruments - Analog Design Engineer	
Designed Under-Voltage Lockout (UVLO), Over-Voltage Lockout (OVLO) for isolated ga	te driver. Aug'20 - Aug'21
Texas Instruments - Analog Intern	
Model parasitic extraction of passives at 14.5 GHz in 180 nmUsing the de-embedded s-parameters, developed models of transmission line, MIM-cap	May'19 - Jul'19 pacitor, inductor, ISO-capacitor.
Research Experience	
Integrated Circuit Design Group, University of Twente, The Netherlands - RFIC	CIntern
Design of mm-wave upconversion mixer at 26 GHz for a novel time-interleaved 5G New K	Radio Feb'20 - Jul'20
Advisors: Prof. Bram Nauta, Prof. Anne-Johan Annema	
• Designed current-driven double-balanced linear passive mixer with $I_{peak} = 46 \text{ mA}$ in 22	nm CMOS FDSOI.
• The design consisted of bootstrapped switches and a transformer balun at the output.	
Preserving polar modulated class-E power amplifier(PA) linearity under load mismatch	Aug'19 - Dec'19
• Implemented a system of polar class-F PA with an on-chip waveform characterizer in 2	22 nm CMOS FDSOI enabling
automatic adaptive digital predistortion (ADPD).	
• Corrected AM/AM, AM/PM distortion, memory and temperature effects under load m	ismatch of VSWR up to 9:1.
• Performed load-pull measurements for a 2 GHz 1024 QAM signal with 1 MSym/s symbols of the providence of the second ACPR 4 25 dR maintained in a significantly larger	ool rate.
• Demonstrated RMS EVM \leq 1.5% and ACPK \leq -35 dB maintained in a significantly larger from 50 Ω optimized static DPD to our ADPD	r area on the Smith chart going
Publications	
A. Khodkumbhe , M. Huiskamp, A. Ghahremani, B. Nauta, A.J. Annema, "Preserving Pc Amplifier Linearity under Load Mismatch", IEEE Radio Frequency Integrated Circuits (RFI invited for IEEE Transactions on Microwave Theory and Techniques (T-MTT). Online Full	olar Modulated Class-E Power C) Symposium, 2020. Full-text -Paper Access
Technical Skills	1
Cadence Virtuoso, SPICE, MATLAB, Simulink, LabVIEW, ADS, Eagle PCB, C, Verilog, Ast	sembly Language
Academic Projects	
Design of DAC driver transimpedance amplifier (TIA)	Apr'22
• Designed a fully differential 2-stage OpAmp with gain-boosting, Ahuja compensation, o	common-mode feedback.
• Loopgain = 65.5 dB, $BW = 531$ MHz, $PM = 60.2^{\circ}$, settling time = 2.9 ns, power = 4.8 m	W, output noise = 160 uVrms .

Design of RF mixer for zero-IF receiver

- Designed single-balanced active mixer in 65 nm CMOS for ISM band at 2.4 GHz.
- Voltage gain = 11 dB, IIP₃ = 3.5 dBm, NF = 10 dB, power = 2.4 mW.

Awards

- Selected for NSF funded IEEE IMS Project Connect.
- Selected for UC Berkeley, Stanford, MIT highest fellowships.

May'20 - Jul'20